Indian Statistical Institute Semestral Examination Differential Geometry I - BMath III

Max Marks: 60

Time: 180 minutes.

[10]

Answer all questions with proper justifications.

- (1) (a) Show that the set S of all unit vectors at all points in R² is a 3-surface in R⁴. [4]
 (b) Let a = (a₁,..., a_{n+1}) ∈ Rⁿ⁺¹, a ≠ 0. Show that the spherical image of an n-surface S in Rⁿ⁺¹ is contained in the n-plane ∑_{i=1}ⁿ⁺¹ a_ix_i = 0 if and only if for every p ∈ S there is an open interval I about 0 such that p + ta ∈ S for all t ∈ I. [8]
- (2) (a) Let $\alpha : [a, b] \longrightarrow S$ be a unit speed parametrized curve in the oriented 2-surface S in \mathbb{R}^3 . Define a function $\kappa : [a, b] \longrightarrow \mathbb{R}$ by

$$\kappa = (\dot{\alpha})' \cdot (\mathbb{N} \circ \alpha \times \dot{\alpha})$$

where \mathbb{N} is the orientation of S. Show that $\kappa(t) = 0$ for all t if and only if α is a geodesic. [6]

(b) Show that a parametrized curve α in the unit sphere $x_1^2 + \cdots + x_{n+1}^2 = 1$ is a geodesic if and only if α is of the form

$$\alpha(t) = (\cos at)e_1 + (\sin at)e_2$$

for some orthonormal pair of vectors $\{e_1, e_2\}$ in \mathbb{R}^{n+1} and some $a \in \mathbb{R}$. [8]

(3) (a) Compute the following integrals :

(i) $\int_C -x_2 \, dx_1 + x_1 \, dx_2$, where *C* is the ellipse $(x_1^2/a^2) + (x_2^2/b^2) = 1, a, b \neq 0$. (ii) $\int_\alpha x_1 \, dx_1 + x_2 \, dx_2$, where α is any curve from (0,0) to (1,1). [8] (b) Let *S* be the *n*-surface $S = f^{-1}(r^2)$ (r > 0) oriented by $\nabla f/||\nabla f||$ where

 $f(x_1, \dots, x_{n+1}) = x_2^2 + x_3^2 + \dots + x_{n+1}^2.$

Compute the normal curvatures k(v) for each tangent direction v, the principal curvatures and principal curvature directions, the Gauss-Kronecker curvature and mean curvature of S at the point $p = (0, 0, \dots, 0, r)$. [10]

(4) (a) Find the Gaussian curvature of the parametrized 2-surface

$$\varphi(t,\theta) = (t\cos\theta, t\sin\theta, \theta).$$

(b) Find the area of the parametrized 2-surface φ defined by

$$\varphi(\theta, \phi) = (a\cos\theta, a\sin\theta, b\cos\phi, b\sin\phi)$$

$$0 < \theta < 2\pi, \ 0 < \phi < 2\pi.$$
 [6]